Homogenous Spaces

11.05.2023

Definition 1 (Homogeneous space). Let M be a set with a Group G acting transitively on it, meaning there is a map $G \times M \rightarrow M,(g, x) \mapsto g x$ satisfying the properties.
i) $(g h) x=g(h x)$ for all $g, h \in G, x \in M$;
ii) ex $=x$ for all $x \in M$ with e being the neutral element of G;
iii) for all $x, y \in M$ there is a $g \in G$ such that $y=g x$.
(M, G) is called a homogeneous space.
Example 1. $S^{2} \subseteq \mathbb{R}^{3}$ is a homogeneous space.
Smooth manifolds are structures which are locally euclidian so we can perform Calculus on them. If G is a matrix group and $H \leq G$ a closed subgroup (therefore also a matrix group), the set of left cosets is defined by $G / H:=\{g H: g \in$ $G\}$, for which we can define the quotient map $\pi: G \rightarrow G / H, \pi(g)=g H$. We equip G / H with a topology, where $W \in G / H$ open $\Leftrightarrow \pi^{-1}(W) \subseteq G$ is open, and call it the quotient topology.
This can be generalized for G being a so called Lie Group, meaning it's a smooth manifold which is also a group with a smooth group operation.
Remark 1. For an arbitrary surjection $q: X \rightarrow Y$ of a topological space X to a set Y, the resulting topology is called quotient topology with respect to $q . q$ is actually continuous under this topology.

Theorem 1. If a matrix group G acts smoothly on a manifold M. If $x \in M$ has the stabiliser $\operatorname{Stab}_{G}(x) \leq G$ and the orbit $\operatorname{Orb}_{G}(x)$ is a closed submanifold, then $f: G / \operatorname{Stab}_{G}(x) \rightarrow \operatorname{Orb}_{G}(x), f\left(g \operatorname{Stab}_{G}(x)\right)=g x$ is a diffeomorphism.

Example 2. For $n \geq 1, O(n)$ acts smoothly on \mathbb{R}^{n}. For any $v \in \mathbb{R} \backslash\{0\}$, Orb $b_{O(n)}(v)$ is diffeomorphic to $O(n) / O(n-1)$.

Projective Spaces

The unit group $\mathbb{R}^{\times}=\mathbb{R} \backslash\{0\}$ acts on \mathbb{R}^{n+1} by the action $z x=x z^{-1}$. We denote the set of orbits as $\mathbb{R} P^{n}$: the n-dimensional projective space. Elements of $\mathbb{R} P^{n}$ are equivalence classes of the form $[x]=\left\{x z^{-1}: z \in \mathbb{R}^{x}\right\}$.
Remark 2. $\mathbb{R} P^{n}$ can be identified with the set of all 1-dimensional subspaces of \mathbb{R}^{n+1} and equipped with the quotient topology: $q_{n}: \mathbb{R}^{n+1} \backslash\{0\} \rightarrow \mathbb{R} P^{n}, q_{n}(x)=[x]$.
Proposition 1. $\mathbb{R} P^{n}$ is a smooth manifold, and it's quotient map q_{n} is smooth with a surjective derivative.

Proposition 2. We have the following diffeomorphisms:

$$
\begin{array}{ll}
\mathbb{R} P^{n} \rightarrow O(n+1) / O(n) \times O(1), & \mathbb{R} P^{n} \rightarrow S O(n+1) / O(n) ; \\
\mathbb{C} P^{n} \rightarrow U(n+1) / U(n) \times U(1), & \mathbb{C} P^{n} \rightarrow S U(n+1) / U(n) .
\end{array}
$$

Definition 2 (Parabolic Subgroup). The parabolic subgroup $P \subseteq S L_{2}(\mathbb{C})$ is the set of all lower triangular matrices $\left(\begin{array}{cc}u & 0 \\ w & v\end{array}\right) \in S L_{2}(\mathbb{C})$

Task: Prove, that $S L_{2}\left((C) / P \rightarrow \mathbb{C} P^{1}\right.$ is a diffeomorphism.

Seminar Matrix Groups

Matrix exponentiation

Amelia Faber - 11.05.2023
Definition 1 (convergence of series in $M_{n}(\mathbb{K})$). A series $\sum_{l=0}^{\infty} A_{l}=A_{0}+A_{1}+A_{2}+\ldots$ of elements $A_{l} \in$ $M_{n}(\mathbb{K})$ converges if for each i, j the series $\left(A_{0}\right)_{i j}+\left(A_{1}\right)_{i j}+\left(A_{2}\right)_{i j}+\ldots$ converges to some $A_{i j} \in \mathbb{K}$.

Definition 2 (matrix exponentiation). $\operatorname{Exp}(A)=\sum_{n=0}^{\infty} \frac{1}{n!} A^{n}$
$\exp : M_{n}(\mathbb{K}) \rightarrow G L_{n}(\mathbb{K})$ defined as $\exp (A)=\operatorname{Exp}(A) \quad \forall A \in M_{n}(\mathbb{K})$

Lemma 1 (properties of the Exp).
1.) $\operatorname{Exp}((u+v) A)=\operatorname{Exp}(u A) \operatorname{Exp}(v A) \forall u, v \in \mathbb{C}, \forall A \in M_{n}(\mathbb{K})$
2.) $\operatorname{Exp}(A) \in G L_{n}(\mathbb{K})$ and $\operatorname{Exp}(A)^{-1}=\operatorname{Exp}(-A) \quad \forall A \in M_{n}(\mathbb{K})$
3.) $\operatorname{Exp}\left(A B A^{-1}\right)=A \operatorname{Exp}(B) A^{-1} \quad \forall A, B \in M_{n}(\mathbb{K})$, A invertible
4.) $\operatorname{Exp}(A+B)=\operatorname{Exp}(A) \operatorname{Exp}(B) \quad$ if $A, B \in M_{n}(\mathbb{K})$ commute

Theorem 1 (Baker-Campbell-Hausdorff formula). $\operatorname{Exp}(X) \operatorname{Exp}(Y)=\operatorname{Exp}(Z) \quad \forall X, Y \in M_{n}(\mathbb{K})$ with $Z=X+Y+\frac{1}{2}[X, Y]+\frac{1}{12}[X,[X, Y]]-\frac{1}{12}[Y,[X, Y]]+\ldots$

Definition 3 (local inverse of exp). $\log (A)=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} A^{n} \quad \forall\|A\|<1$
$\log : N_{M_{n}(\mathbb{K})}(I ; 1) \rightarrow M_{n}(\mathbb{K})$ defined as $\log (A)=\log (A-I) \quad \forall\|A-I\|<1$

Lemma 2 (local diffeomorphism). exp : $N_{M_{n}(\mathbb{K})}(0 ; \log 2) \rightarrow N_{G L_{n}(\mathbb{K})}(I ; 1)$ is a local diffeomorphism near 0 with local inverse log.

Definition 4 (integral curve). A path $\alpha: \mathbb{R} \rightarrow \mathbb{R}^{m}$ is called an integral curve of a vector field $F: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ if $\alpha^{\prime}(t)=F(\alpha(t)) \forall t \in \mathbb{R}$.

Lemma 3. $A \in M_{n}(\mathbb{K}), \gamma(t)=e^{t A} \forall t \in \mathbb{R}$
i) $\forall X \in \mathbb{K}^{n}, \alpha(t)=X \cdot \gamma(t)$ is an integral curve of the vector field on A
ii) $\gamma(t)$ is an integral curve of the vector field on $M_{n}(\mathbb{K})$

Definition 5 (one-parameter group). A one-parameter group in G is a continuous function $\gamma: \mathbb{R} \rightarrow G$ which is differentiable at 0 and also satisfies $\gamma(s+t)=\gamma(s) \gamma(t) \forall s, t \in \mathbb{R}$.

Theorem 2 (matrix valued differential equations). For $A, C \in M_{n}(\mathbb{R})$ with $A \neq 0$ the differential equation $\left\{\begin{array}{c}\alpha^{\prime}(t)=\alpha(t) \cdot A \\ \alpha(0)=C\end{array}\right.$ has a unique solution $\alpha: \mathbb{R} \rightarrow M_{n}(\mathbb{R})$ defined as $\alpha(t)=C e^{t A}$

Excercise 1. Compute the matrix exponential $\operatorname{Exp}(t A) \forall t \in \mathbb{R}$ for $A=\left(\begin{array}{cc}a & b \\ -b & a\end{array}\right)$

