Homogenous Spaces

11.05.2023

Definition 1 (Homogeneous space). Let *M* be a set with a Group *G* acting transitively on it, meaning there is a map $G \times M \rightarrow M$, $(g, x) \mapsto gx$ satisfying the properties:

i) (gh)x = g(hx) for all $g, h \in G, x \in M$;

ii) ex = x for all $x \in M$ with e being the neutral element of G;

iii) for all $x, y \in M$ there is a $g \in G$ such that y = gx.

(M, G) is called a homogeneous space.

Example 1. $S^2 \subseteq \mathbb{R}^3$ *is a homogeneous space.*

Smooth manifolds are structures which are locally euclidian so we can perform Calculus on them. If *G* is a matrix group and $H \leq G$ a closed subgroup (therefore also a matrix group), the set of left cosets is defined by $G/H := \{gH : g \in G\}$, for which we can define the quotient map $\pi : G \to G/H$, $\pi(g) = gH$. We equip G/H with a topology, where $W \in G/H$ open $\Leftrightarrow \pi^{-1}(W) \subseteq G$ is open, and call it the quotient topology.

This can be generalized for G being a so called Lie Group, meaning it's a smooth manifold which is also a group with a smooth group operation.

Remark 1. For an arbitrary surjection $q : X \to Y$ of a topological space X to a set Y, the resulting topology is called quotient topology with respect to q. q is actually continuous under this topology.

Theorem 1. If a matrix group G acts smoothly on a manifold M. If $x \in M$ has the stabiliser $Stab_G(x) \leq G$ and the orbit $Orb_G(x)$ is a closed submanifold, then $f: G/Stab_G(x) \rightarrow Orb_G(x)$, $f(gStab_G(x)) = gx$ is a diffeomorphism.

Example 2. For $n \ge 1$, O(n) acts smoothly on \mathbb{R}^n . For any $v \in \mathbb{R} \setminus \{0\}$, $Orb_{O(n)}(v)$ is diffeomorphic to O(n)/O(n-1).

Projective Spaces

The unit group $\mathbb{R}^{\times} = \mathbb{R} \setminus \{0\}$ acts on \mathbb{R}^{n+1} by the action $zx = xz^{-1}$. We denote the set of orbits as $\mathbb{R}P^n$: the n-dimensional projective space. Elements of $\mathbb{R}P^n$ are equivalence classes of the form $[x] = \{xz^{-1} : z \in \mathbb{R}^x\}$.

Remark 2. $\mathbb{R}P^n$ can be identified with the set of all 1-dimensional subspaces of \mathbb{R}^{n+1} and equipped with the quotient topology: $q_n : \mathbb{R}^{n+1} \setminus \{0\} \to \mathbb{R}P^n$, $q_n(x) = [x]$.

Proposition 1. $\mathbb{R}P^n$ *is a smooth manifold, and it's quotient map* q_n *is smooth with a surjective derivative.*

Proposition 2. We have the following diffeomorphisms:

$$\mathbb{R}P^n \to O(n+1)/O(n) \times O(1), \quad \mathbb{R}P^n \to SO(n+1)/O(n); \\ \mathbb{C}P^n \to U(n+1)/U(n) \times U(1), \quad \mathbb{C}P^n \to SU(n+1)/U(n).$$

Definition 2 (Parabolic Subgroup). *The parabolic subgroup* $P \subseteq SL_2(\mathbb{C})$ *is the set of all lower triangular matrices* $\begin{pmatrix} u & 0 \\ w & v \end{pmatrix} \in SL_2(\mathbb{C})$

Task: Prove, that $SL_2((C)/P \to \mathbb{C}P^1$ is a diffeomorphism.

Seminar Matrix Groups **Matrix exponentiation** Amelia Faber - 11.05.2023

Definition 1 (convergence of series in $M_n(\mathbb{K})$). A series $\sum_{l=0}^{\infty} A_l = A_0 + A_1 + A_2 + \dots$ of elements $A_l \in M_n(\mathbb{K})$ converges if for each i, j the series $(A_0)_{ij} + (A_1)_{ij} + (A_2)_{ij} + \dots$ converges to some $A_{ij} \in \mathbb{K}$.

Definition 2 (matrix exponentiation). $Exp(A) = \sum_{n=0}^{\infty} \frac{1}{n!} A^n$ $exp: M_n(\mathbb{K}) \to GL_n(\mathbb{K})$ defined as $exp(A) = Exp(A) \quad \forall A \in M_n(\mathbb{K})$

Lemma 1 (properties of the Exp).

- 1.) $Exp((u+v)A) = Exp(uA)Exp(vA) \forall u, v \in \mathbb{C}, \forall A \in M_n(\mathbb{K})$
- 2.) $Exp(A) \in GL_n(\mathbb{K})$ and $Exp(A)^{-1} = Exp(-A) \quad \forall A \in M_n(\mathbb{K})$
- 3.) $Exp(ABA^{-1}) = AExp(B)A^{-1} \quad \forall A, B \in M_n(\mathbb{K}), A invertible$
- 4.) Exp(A+B) = Exp(A)Exp(B) if $A, B \in M_n(\mathbb{K})$ commute

Theorem 1 (Baker-Campbell-Hausdorff formula). $Exp(X)Exp(Y) = Exp(Z) \quad \forall X, Y \in M_n(\mathbb{K}) \quad with Z = X + Y + \frac{1}{2}[X, Y] + \frac{1}{12}[X, [X, Y]] - \frac{1}{12}[Y, [X, Y]] + \dots$

Definition 3 (local inverse of exp). $Log(A) = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} A^n \quad \forall ||A|| < 1$ $log: N_{M_n(\mathbb{K})}(I; 1) \to M_n(\mathbb{K})$ defined as $log(A) = log(A - I) \quad \forall ||A - I|| < 1$

Lemma 2 (local diffeomorphism). $exp : N_{M_n(\mathbb{K})}(0; log2) \to N_{GL_n(\mathbb{K})}(I; 1)$ is a local diffeomorphism near 0 with local inverse log.

Definition 4 (integral curve). A path $\alpha : \mathbb{R} \to \mathbb{R}^m$ is called an integral curve of a vector field $F : \mathbb{R}^m \to \mathbb{R}^m$ if $\alpha'(t) = F(\alpha(t)) \ \forall t \in \mathbb{R}$.

Lemma 3. $A \in M_n(\mathbb{K}), \gamma(t) = e^{tA} \forall t \in \mathbb{R}$ *i)* $\forall X \in \mathbb{K}^n, \alpha(t) = X \cdot \gamma(t)$ *is an integral curve of the vector field on* A*ii)* $\gamma(t)$ *is an integral curve of the vector field on* $M_n(\mathbb{K})$

Definition 5 (one-parameter group). A one-parameter group in G is a continuous function $\gamma : \mathbb{R} \to G$ which is differentiable at 0 and also satisfies $\gamma(s + t) = \gamma(s)\gamma(t) \ \forall s, t \in \mathbb{R}$.

Theorem 2 (matrix valued differential equations). For $A, C \in M_n(\mathbb{R})$ with $A \neq 0$ the differential equation $\begin{cases} \alpha'(t) = \alpha(t) \cdot A \\ \alpha(0) = C \end{cases}$ has a unique solution $\alpha : \mathbb{R} \to M_n(\mathbb{R})$ defined as $\alpha(t) = Ce^{tA}$

Excercise 1. Compute the matrix exponential $Exp(tA) \ \forall t \in \mathbb{R}$ for $A = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}$